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ve studijńım oboru Matematické inženýrstv́ı
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Abstrakt: Disertačńı práce se zabývá numerickou simulaćı dislokačńı dynamiky, inter-
akćı dislokaćı a jejich topologickými změnami. Dislokace jsou reprezentovány para-
metrickým popisem rovinných křivek. Matematický model je založen na numerickém
řešeńı rovnice, která popisuje pohyb křivky v závislosti na jej́ı křivosti. Největš́ı po-
zornost je kladena na simulaci cross-slipu dislokaćı, kdy dislokace při svém pohybu
změńı skluzovou rovinu a vzájemně anihiluj́ı. Hlavńım ćılem je nalézt podmı́nky, při
kterém ke cross-slipu dislokaćı dojde. Pohyb dislokaćı, jejich spojováńı a rozdělováńı
a změna skluzové roviny jsou simulovány pomoćı vylepšeného parametrického modelu.
Vyšš́ı numerická stabilita je dosažena redistribućı diskretizačńıch bod̊u podél křivky.

Kĺıčová slova: parciálńı diferenciálńı rovnice, metoda konečných diferenćı, dislokačńı
dynamika, cross-slip, anihilace

Title: Mathematical model of interactions in discrete dislocation dynamics

Author: Petr Pauš

Abstract: The thesis deals with the numerical simulation of dislocation dynamics,
dislocation interaction, and changes in the dislocation topology (merging and splitting).
The glide dislocations are represented by parametrically described curves moving in
slip planes. The simulation model is based on the numerical solution of the dislocation
motion law belonging to the class of curvature driven curve dynamics. The work mainly
focuses on the simulation of the cross-slip of two dislocation curves where each curve
evolves in a different slip plane. The goal is to simulate the motion of the dislocations
and to determine the conditions under which the cross-slip occurs. The simulation of
the dislocation evolution and merging is performed by improved parametric approach
and numerical stability is enhanced by the tangential redistribution of the discretization
points.

Key words: partial differential equations, finite difference method, dislocation dynam-
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1 Introduction

A B

~b = [1̄, 0, 1] (1, 1, 1) plane

x

z

screw segmentedge segment

Figure 1: Dislocation types in face-centered
cubic metals.

In the field of material science, dislo-
cations are defined as irregularities or
errors in crystal structure of the ma-
terial. The dislocation is a line de-
fect of the crystalline lattice and it can
be represented by a curve closed inside
the crystal or by a curve ending on
the crystal surface. At low homologous
temperatures the dislocations can move
only along crystallographic planes (glid-
ing planes) with the highest density of
atoms. The motion results in mutual
slipping of neighboring parts of the crys-
tal along the gliding planes.

Dislocations are defined by the Burgers vector ~b and the dislocation line. When the
Burgers vector is perpendicular to the dislocation line, we say that the dislocation is
of an edge type. In case of a screw dislocation, the Burgers vector and dislocation line
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are parallel. Otherwise, the dislocation is mixed (see Fig. 1). In face-centered cubic
metals (fcc), such as copper, silver, and nickel, glide planes are usually crystalographic
planes with highest density of atoms (denoted as (1, 1, 1) by Miller indices).

The presence of dislocations strongly influences many of material properties. Also
the plastic deformation in crystalline solids is carried by dislocations. Therefore, there
is a strong interest in understanding and modeling their behavior without performing
expensive experiments. The dislocation research began in 1930s and since that time
it became an important branch of material physics. There are numerous theoretical
and experimental results. However, complex mathematical models handling dislocation
annihilation and cross-slip are still in development. There are atomistic models treating
dislocations at the scale of individual atoms or mesoscale models working at the scale
of hundreds of nanometers.

However, the dislocation motion may become more complex. Dislocations can un-
dergo the cross-slip mechanism. It allows the screw dislocations to change the slip
planes and thus to bypass obstacles or to glide to annihilation with a screw dislocation
of opposite sign on a neighboring slip plane.Despite of an extended research in the field
of cross-slip since 1950s, the cross-slip remains one of the lesser understood aspects of
plastic deformation; number of questions related to cross-slip is still open. Accord-
ing to Essman’s model of slip irreversibility [10] supported by Weidner and Sauzay
measurements [53] the critical annihilation distance is one of the main microstructural
parameters. The mechanism controlling the value of this parameter is not yet well
known and is the subject of ongoing intense research.

The influence of dislocations and particularly the cross-slip phenomenon justifies
the importance of developing suitable mathematical models [24–26, 31, 33, 34, 43, 44]
treating the problem. Section 2 deals with the physical background of the proposed
dislocation dynamics model, i.e., the motion law, interaction and applied forces, and
the channel walls and focuses on its mathematical description. From the mathematical
point of view, the dislocations are defined as smooth closed or open planar curves
which evolve in time. Their motion is two-dimensional in most cases. The evolving
curves can be mathematically described in several ways. One possibility is to use the
level-set method [11,30,46], where the curve is defined by the zero level of some surface
function. One can also use the phase-field method [2]. Finally, it is possible to use the
direct (parametric) method [8,23] where the curve is parametrized in the usual way. The
model presented in this work is based on the generalized parametric approach which is
able to evolve multiple curves simultaneously. Moreover, the parametric approach does
not handle topological changes, therefore, the model contains additional algorithm [34]
treating the dislocation merging and splitting.

Section 3 deals with the numerical solution which is obtained by semi-implicit and
semi-discrete solver based on finite differences method (FDM) and flowing finite vol-
umes method (FVM) with tangential redistribution [48]. Schemes were verified by
comparison with analytical solution and also with other results known from the lit-
erature. Simulations of the dislocation dynamics phenomena were done by the finite
volume method.

Main results are summed in Section 4. Single dislocation problems, such as the
dislocation cycling and the Frank-Read source, serve mainly for the qualitative verifi-
cation (shapes of dislocations) of the model, while the dislocation bowing simulation
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provides critical bowing stress values that can be compared with analytical results.
The simulation of the dislocation-precipitate interaction, i.e., the formation of Orowan
loops and islands (dislocation loops surrounding precipitates or their clusters), is a
direct application of the algorithm for topological changes of the dislocations curves.
Main focus is paid to the interaction of two dislocations moving towards each other on
nearby planes in the PSB channel. Simulations provide passing and cross-slip stresses
for various metals and temperatures. Using Brown’s criterion [7] the critical cross-slip
parameters (critical stress and critical slip plane distance) are obtained.

2 Mathematical model

In the following sections, general dislocation theory described above will be applied to
a specific case of one or two gliding dislocations in a channel. The dislocation motion
has to take into account all forces acting on the dislocation and in the same time also
the dislocation line tension which depends on the curvature. In our case, there are four
kind of external forces, i.e., force from the channel walls, interaction force from other
dislocations, force caused by the shear stress applied on the crystal, and the friction
force of the lattice.

2.1 Dislocation motion law

Dislocations can move in the glide planes mainly by means of applied shear stress and
their mutual interaction. The basic equation of the motion of a dislocation curve Γ
reads as

BvΓ = Ftotal, (1)

where B is the drag coefficient, vΓ is the velocity of the dislocation motion, and the
term Ftotal denotes the sum of all forces per unit length acting on the dislocation
curve Γ (including the self-force caused by the dislocation line tension T ). Kratochv́ıl
and Sedláček [17] proved that the dislocation self-force can be approximated by the
curvature of a corresponding dislocation curve. The self-force term Fself = bτself
where τself is the stress generated by the dislocation itself can be approximated as
bτself = κT . Thus, the dislocation motion law reads as

BvΓ = TκΓ + F, (2)

where F = Fapp+Fint+Fwall−Ffr is the sum of all forces except dislocation self-force
acting on the dislocation:

• Fapp = bτapp caused by the resolved shear stress τapp applied on the crystal,

• Fint = bτint caused by the interaction stress τint between dislocations in the
channel,

• Fwall = bτwall caused by the stress from channel walls τwall,

• friction Ffr = bτfr caused by lattice resistance which slows down the movement
of the dislocation and must be surpassed in order to move the dislocation. The
friction is constant during the simulation.
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2.2 Force by channel walls

Dislocations in the persistent slip band channel1 interact with the dipolar loops clus-
tered in the channel walls, however, it is only a short range interaction. This interaction
can be approximately simulated as elastic fields of infinite edge dipoles located in the
channel walls. The walls are, in fact, potential valleys generated by the dipoles.

The resolved shear stress in the glide plane produced by an edge dipole consisting
of dislocations D1 and D2 is obtained by the superposition of their stress fields σxy

τ (1)
w = σD1

xy − σD2
xy =

Gb

2π

1

1− ν

(
x1(x2

1 − y2
1)

(x2
1 + y2

1)2
− x2(x2

2 − y2
2)

(x2
2 + y2

2)2

)
, (3)

where x1 and y1 are the coordinates of a certain point in a channel relative to the edge
dislocation D1. Similarly x2 and y2 are coordinates of the same point but relative to
edge dislocation D2. The term G is the shear modulus, ν is the Poisson’s ratio and b
is the magnitude of the Burgers vector. The interaction with the walls is considered
only in the direction of x-axis due to the symmetry of the channel. Similarly, we can

derive τ
(2)
w for the other channel wall. The formula for the total resolved shear stress

produced by both walls reads as

τwall = τ (1)
w + τ (2)

w . (4)

In case of two parallel glide planes, channel walls are considered in the same manner.
Each glide plane has its dipoles producing left and right wall. Influences from dipoles
related to other planes are not considered.

2.3 Applied force

In face centered cubic metals, the most favorable slip planes are of the {1, 1, 1} type
since the atoms are close-packed in these planes. For the our model, we consider,
for example, the primary slip system P : [1̄, 0, 1](1, 1, 1) and its cross-slip system C :
[1̄, 0, 1](1, 1̄, 1), see Fig. 2. The primary slip plane (1, 1, 1) is colored by blue color and

the cross-slip plane has a red color. The Burgers vector ~b = [1̄, 0, 1] is common for

both planes and in the unit form it reads as ~b′ = [−1/
√

2, 0, 1/
√

2]. Unit normal vector
of the primary plane is np = [1, 1, 1]/

√
3 and the cross-slip plane ncs = [1,−1, 1]/

√
3.

The slip planes form an angle of δ = arccos(1/3) ≈ 70.6◦, since

cos δ =
[1, 1, 1] · [1,−1, 1]√

3
√

3
=

1

3
.

If the tensile stress σapp is applied on the crystal in a certain direction, values of the
shear stress component in the primary and the cross-slip plane are derived using the
Schmid factor (5). The stress in primary plane is given as

τp = σapp cos ξ cosφp, (5)

1Persistent slip bands (PSB) are lamellae consisting of edge dislocation dipoles usually parallel
to the active slip plane with a periodic inner structure of high dislocation density walls and
low density of channels

4



z′

x′

y′

~b
0

1

1

1

1̄

Figure 2: Configuration of the slip planes. Primary plane (1, 1, 1) (blue), cross-slip

plane (1, 1̄, 1) (red). Burgers vector ~b = [1̄, 0, 1] common for both slip planes.

where ξ is the angle between tensile stress direction and slip direction (the Burgers

vector~b) and φp is the angle between tensile stress direction and Primary plane normal.
Similarly, the stress in cross-slip plane is given as

τcs = σapp cos ξ cosφcs, (6)

where φcs is the angle between the tensile stress axis and the cross-slip plane normal.
After some technical work [32], stress values can be derived and read as follows:

τcs =
1

3
σapp cos ξ

(
cosφp ± 2

√
− cos(2ξ)− cos(2φp)

)
, (7)

In case of tensile axis lying in the plane defined by the Burgers vector and a normal to
the primary plane, i.e., substituting φp = π/2− ξ, we get

τcs =
1

6
σapp sin(2ξ). (8)

Under these conditions the value of the stress in the primary plane is

τp = σapp cos ξ cosφp = σapp cos ξ cos(
π

2
− ξ) =

1

2
σapp sin(2ξ). (9)

One can see that the stress in the cross-slip plane is 1/3 of the primary plane stress.
To maximize both stresses, we chose ξ = π/4 which yields

τp =
1

2
σapp, τcs =

1

6
σapp. (10)

2.4 Interaction force

The dislocation motion is influenced not only by external forces applied on the material
but also by the interaction force with other dislocations. In our case, dislocations are
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δ

primary plane (1, 1, 1)

cross-slip plane (1, 1̄, 1)

x

y

z

Figure 3: Coordinate transformation. The primary (1, 1, 1) plane now coincide with
xz-plane.

approximated by polygonal curves and all interactions are sums of contributions of
straight dislocation segments. In continuous case, sums are substituted by integrals.
This section deals with the derivation of the interaction force between dislocations.

The coordinate system x′, y′, z′ of a real crystal introduced in the previous section is
rather complicated for the derivation of the model and for the numerical computations.
Therefore, the system x′, y′, z′ will be rotated in order to simplify the problem. The
new coordinate system x, y, z is shown in Fig. 3. Now the primary plane lies in the
xz-plane and the Burgers vector which is parallel with the x-axis reads as ~b = [b, 0, 0]
where b is its magnitude.

~w
~x

A

B

~R

~ρ

·

Figure 4: Stress field from the dislocation
segment AB at a location ~x and
corresponding vectors.

To determine a stress tensor

σint(~x) =

σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ44

 , (11)

in the x, y, z coordinate system at a lo-
cation ~x from a straight dislocation seg-
ment AB (see Fig. 4), we use Devin-
cre’s formula for three dimensional stress
field [9]. The formula provides a stress
tensor from a dislocation half-line from
A to infinity in the direction of ~w and
reads as

σAij =
G

4π

1

R(U +R)

[
(~b× ~Y )iwj + (~b× ~Y )jwi − 1

1− ν
(
(~b× ~w)iYj + (~b× ~w)jYi

)
− (~b, ~ρ, ~w)

1− ν
[
δij + wiwj +

(ρiwj + ρjwi + Uwiwj)(U +R)

R2
+
ρiρj(2 + U/R)

R(U +R)

]]
,

where the meaning of terms is as follows:

6



~w tangential vector of the dislocation segment,
~R vector to the location ~x from A,

R =
√
R2

1 +R2
2 +R2

3,

U = ~R · ~w,

Yi = Ri + ~Rwi,

~ρ = ~R− U ~w normal component of ~R to the dislocation segment,
~b Burgers vector of the dislocation,
G shear modulus,
i, j = 1,2,3, (x-axis, y-axis, z-axis)
ν Poisson’s ratio,
δij Kronecker symbol,

(~b, ~ρ, ~w) is the triple product (~b, ~ρ, ~w) = ~b(~ρ× ~w).
The stress tensor generated by a straight finite dislocation segment AB is then given

as
σint(~x) = σij = σAij(~x)− σBij(~x). (12)

The stress field causes forces that act on the dislocation at position ~x. We use Peach-
Koehler formula [45] to compute forces on the dislocation exposed to a stress field σint
generated by other dislocations. The formula reads as

~Fint = (σint~b)× ~w, (13)

where ~b is the Burgers vector of the dislocation and ~w is its tangential vector. Note
that ~Fint is always perpendicular to the plane defined by ~b and σint~b, and is always
perpendicular to ~w. The motion is caused by the normal component of ~Fint to the
dislocation in the slip plane. The projection is done simply by a dot product with the
normal vector to the dislocation ~n in the slip plane, i.e.,

Fint = ~Fint~n. (14)

The Burgers vector ~b = (b, 0, 0) is parallel with the x-axis and the primary slip plane
parallel with the xz-plane. Hence, the unit tangential vector of the dislocation has the
form ~wp = (w1, 0, w3) and the unit normal vector ~np = (w3, 0,−w1). Vectorial force is
given by

~F
(p)
int = (σint~b)× ~wp = b

σ11

σ12

σ13

× ~wp = b(σ12w3, σ13w1 − σ11w3,−σ12w1),

and the normal component in the xz-plane

F
(p)
int = ~F

(p)
int~np = b(σ12w

2
3 + σ12w

2
1) = bσ12(w2

3 + w2
1) = bσ12. (15)

Similarly, we can derive the force in the cross-slip plane having angle δ with the
xz-plane. The tangential vector of the dislocation is defined as ~wcs = (w1, w3 tan δ, w3)
and the normal vector in the cross-slip plane ~ncs = (w3(tan2 δ + 1),−w1 tan δ,−w1).
Vectorial force is given by

~F
(cs)
int = (σint~b)× ~wcs = b(σ12w3 − σ13w3 tan δ, σ13w1 − σ11w3, σ11w3 tan δ − σ12w1),
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and the normal component in the cross-slip plane

F
(cs)
int = ~F

(cs)
int ~ncs = (16)

bσ12(w2
3 tan2 δ + w2

3 + w2
1)

+ bσ11(w1w3 tan δ − w1w3 tan δ)

+ bσ13(−w2
3 tan3 δ − w2

3 tan2 δ − w2
1 tan δ)

= bσ12 − bσ13 tan δ. (17)

One can easily see that for δ = 0, i.e., for the primary plane, (17) provides the same
result as (15).

Y5

Y4
Y3

Y2

Y1

Z5

Z4

Z3
Z2

Z1

Figure 5: Tension from dislocation
Y on Z by (19).

The stress field generated by a polygonal dis-
location curve is a sum of stresses of all seg-
ments. Let us consider a polygonal dislocation
curve Y = {Y1, · · · , YN}. Then the total stress
from the dislocation Y at point X is given by

σYij(X) =

N−1∑
k=1

σ
Yk
ij (Zi)− σYk+1

ij (Zi). (18)

In case of two interacting dislocations Y =
{Y1, · · · , YN} and Z = {Z1, · · · , ZM}, one has to
compute stress field from one dislocation at every
point of the second dislocation. see Fig. 5.

σij(Zi) =

N−1∑
k=1

σ
Yk
ij (Zi)− σYk+1

ij (Zi), i, j ∈ 1, 2, 3.

(19)

2.5 Cross-slip criterion

The model treats several dislocation phenomena, including the cross-slip mechanism
where dislocations can change slip planes if another one is favorable. To formulate the
cross-slip criterion, i.e., to specify the cross-slip conditions, we consider two dislocations
of opposite sign in two parallel primary slip planes η1 and η2 (see Fig. 6). The
dislocations in a channel of persistent slip bands are initially kept apart in straight
screw positions. As the dislocations are pushed by the applied stress between two
channel walls in the opposite directions, they bow out and attract each other. One of
three scenarios may occur:

a) reaching the cross-slip geometry (see Fig. 6), the screw tips of the dislocations
are forced to enter the cross-slip plane. There the dislocation segments spread and
their screw parts annihilate,

b) the dislocations remain in the primary slip planes and form a dipole,

c) the dislocations in the primary slip planes separate and escape each other.
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h

~b

δ

prim. plane η1

prim. plane η2

cross-slip plane

Figure 6: Dislocations at the cross-slip configuration when the cross-slip criterion is
evaluated.

Our objective is to determine the distance between the primary slip planes critical for
the cross-slip annihilation and to simultaneously estimate the saturation stress needed
for the escape. For this purpose Brown’s criterion [7] is used: the saturation stress in
cycling is controlled by the stress required to separate two screw dislocations of opposite
sign, which are just on the point of mutual annihilation by cross-slip.

Let us consider that the tips of the dislocations are reaching the cross-slip configu-
ration shown in Fig. 6. We compare the force bτp pushing the tips into the primary
planes and the force bτcs pushing them into the cross-slip plane at the moment when
the screw tips touch the intersection lines of the primary planes and the cross-slip
plane. At this “cross-road” where the dislocations are still in the primary slip planes
the friction stress τfr, the curvature κ and the stress exerted by walls τwall are the
same for both directions. The applied stress and the interaction stress resolved into
either the primary planes or the cross-slip plane are the only quantities which differ.
The forces bτp and bτcs are given as follows:

bτp = Tκ+ b(τ
(p)
int + τwall + τapp − τfr),

bτcs = Tκ+ b(τ
(cs)
int + τwall + τapp/3− τfr),

where τ
(p)
int represents the interaction stress provided the dislocations are going to con-

tinue the motion in the primary planes, τ
(cs)
int is the interaction stress provided the

dislocations enter the cross-slip plane, τapp is the resolved shear stress component of
the applied stress in the primary planes. In the evaluation of the resolved shear stress
component τapp/3 in the cross-slip plane we assume that the angle between the load-
ing axis and the normal to the primary slip planes is π/4, i.e. the orientation of the
loading axis is in the center of the standard stereographic triangle. The derivation is
provided in Section 2.3. Let us note that for modeling the whole cross-slip annihilation
process the curvature in the cross-slip plane has to be defined and calculated. In [38]
where the annihilation process and overcoming obstacles by cross-slip are modeled it
is demonstrated that the curvature smoothly continues in the cross-slip plane and that
the difference in the curvatures in the cross-slip plane and in the primary planes just af-
ter the “cross-road” is about 3% (see the last paragraph in Section 2.6). The cross-slip
criterion is then formulated as follows:

• cross-slip occurs, whenever τcs > τp,

• primary slip continues, whenever τcs ≤ τp.
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h
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Primary plane η1

Primary plane η2

Cross-slip plane η3

d
Projection of η1 Projection of η2

Projection of η3

x

y

z

0Working plane ω

Figure 7: Mapping between two and three dimensional model. Forces on dislocations
are evaluated in 3D in planes η1, η2, η3 and then projected into 2D to the
working plane ω for the computation by mean curvature flow equation (2).
The mapping works similarly to “folding a box”.

2.6 Model for dislocations in non-parallel planes

The phenomenon of cross-slip is related to the interaction between the dislocations in
different slip planes and to the topological change in dislocation configuration leading
to the connection of different slip planes through the cross-slip plane transversal to the
slip planes.

The model of cross-slip is based on evolution law (2), treated in slip planes, evaluating
the force interaction between the dislocations by means of the Devincre’s formula (see
Section 2.4) and following the criterion of cross-slip and dislocation topological change.
As far as the cross-slip plane is transversal to the slip planes, the model explores the
three-dimensional nature of the force interaction. The motion laws for dislocation
curves Γη1 ,Γη2 ,Γη3 in slip planes η1 and η2 and the cross-slip plane η3 are given by

Bvi = Tκi + Fi( ~X, t), i ∈ {η1, η2, η3}, (20)

where again B is the drag coefficient, T is the line tension, and vi and κi are normal
velocity and curvature of the dislocation under the force Fi in their respective planes
η1, η2, η3, i.e.,

Fη1,2 =

{
Fwall( ~X, t) + F

(p)
app + F

(p)
int − Ffr

0
if Fwall( ~X, t) + F

(p)
app + F

(p)
int > Ffr

otherwise;

Fη3 =

{
Fwall( ~X, t) + F

(cs)
app + F

(cs)
int − Ffr

0
if Fwall( ~X, t) + F

(cs)
app + F

(cs)
int > Ffr

otherwise.
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Under the conditions considered in Section 2.3 the forcing terms read as

F (cs)
app =

1

3
F (p)
app, F

(p)
int = bσ12, F

(cs)
int = bσ12 − bσ13 tan δ.

Mathematical treatment of this model is based on the projection of dislocation mo-
tion laws in different planes into one working plane ω. This projection preserves shape
of the dislocation curves and forces acting on them in the normal direction.

The three-dimensional real configuration of the physical model is shown in the upper
part of Figure 7 and the configuration projected to ω in the lower part of Figure 7.

The dislocations are contained in the parallel primary slip planes η1 and η2 the
distance h apart. The cross-slip plane with angle δ against the primary plane η2.
Then, the length d of the cross-slip plane segment between η1 and η2 is d = h/ sin δ.

The projection Φ into the working plane ω is described as follows:
Denote the coordinates related to the plane η1 as (xη1 , yη1 , zη1), to the plane η2 as

(xη2 , yη2 , zη2), to the plane η3 as (xη3 , yη3 , zη3), and to the plane ω as (xω, yω, zω).
Assume that the intersection η1 ∩ η3 corresponds to the line xη1 = −d cos δ = −h cot δ
and the intersection η2 ∩ η3 corresponds to the line xη2 = 0.

Then the mapping Φ from η1 ∪ η2 ∪ η3 to ω is given as follows:

~Xω = (xω, yω, zω) =


(xη1 − d(1− cos δ), 0, zη1) for ~Xη1 ∈ η1,

(xη2 , 0, zη2) for ~Xη2 ∈ η2,

(xη3/ cos δ, 0, zη3) for ~Xη3 ∈ η3.

(21)

The inverse mapping Φ−1 from ω to η1 ∪ η2 ∪ η3 is given by

~Xη1 = (xη1 , yη1 , zη1) = (xω + d(1− cos δ), 0, zω) for xω < −d,
~Xη2 = (xη2 , yη2 , zη2) = (xω, 0, zω) for xω > 0,
~Xη3 = (xη3 , yη3 , zη3) = (xω cos δ),−xω sin δ, zω) for xω ∈ 〈−d, 0〉,

(22)

At first, the forces on dislocations are computed and then the geometry is projected
into the working plane ω. After the projection, the curve motion is treated as a multiple
dislocation problem including topological changes described later. When the equation
of motion is applied, the working plane ω is mapped back to planes η1, η2, and η3.

3 Numerical approximation

The equation of motion (2) is treated by the parametric (direct) approach. In this
case, the planar curve Γ(t) is described by a smooth time-dependent vector function

~X : Iu × It → R2,

where It = [0, tmax] is the time interval and Iu = [0, 1] is a fixed interval for the
curve parameter. For open curves we consider usual closed unit interval, while for
closed curves a circle of length 1 is taken to ensure curve smoothness on the interval
boundary. The curve Γ(t) is then given as the set

Γ(t) = { ~X(u, t) = (1X(u, t),2X(u, t)), u ∈ Iu},
where 1X(u, t),2X(u, t) are the components of ~X(u, t). The family of curves satisfies
the equation of motion (2).
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0 1

~X(u, t)

Γ(t)

Figure 8: Parametric method. The
curve is mapped from a fixed
interval [0, 1].

The unit tangential vector ~w is defined as
~w = ∂u ~X/|∂u ~X|. The unit normal vector
~n is perpendicular to the tangential vector
and ~n~w = 0 holds, i.e., ~n = ∂u ~X

⊥/|∂u ~X|
where ~X⊥ is a vector perpendicular to ~X.
In case of closed curve, ~n is the inner vector
to the interior of the curve. In case of open
curve, ~n has a selected, pre-defined direction
(e.g., upwards). The orientation of the curve
is clockwise.

Using the Frenet formulae (see e.g. [47]),
one can determine the curvature

κΓ =
∂uu ~X

|∂u ~X|2
· ∂u

~X⊥

|∂u ~X|
= ~N · ∂uu

~X

|∂u ~X|2
.

The normal velocity vΓ is defined as the time derivative of ~X projected into the normal
direction,

vΓ = ∂t ~X · ∂u
~X⊥

|∂u ~X|
.

To improve numerical stability of the computation, tangential term α is added to
the equation2. Tangential motion of the discretization points is called redistribution of
the discretization points. Subtituting above quantities and multiplying by ~n, we obtain
the differential equation for the curve motion as follows

B∂t ~X = T
∂uu ~X

|∂u ~X|2
+ α

∂u ~X

|∂u ~X|
+ F ( ~X, t)

∂u ~X
⊥

|∂u ~X|
. (23)

This equation is accompanied either by the periodic boundary conditions

~X(0, t) = ~X(1, t),

for closed dislocation curves, or with fixed ends boundary conditions

~X(0, t) = ~Xfixed,0, ~X(1, t) = ~Xfixed,1,

for open dislocation curves. The initial condition for the curve position is prescribed
as

~X(u, 0) = ~Xini(u).

The term α is described in detail in [48–50].

2When tracking a curve motion, usually only terms in normal direction to the curve are taken
into account since tangential terms do not affect the shape of the curve (for more details,
see [12, Proposition 2.4]).
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3.1 Topological changes algorithm

The algorithm we present is not supposed to be universal for every situation and
possibility. Main purpose is to simulate topological changes that can occur during
dislocation dynamics, i.e., topological changes such as annihilation (merging) of dislo-
cation curves, multiplication of curves on encounter, etc. As the initial condition, we
consider only curves which do not intersect itself and do not touch each other. The
orientation of curves is clockwise. The algorithm is designed for topological changes
of curves which touch only at one point. More complex changes can be treated by
multiple application of the algorithm in one time step. The evolution after merging
or splitting behaves as expected. Normal vectors and evolution speed correspond to the
situation captured by the level-set method. The results of the algorithm are compared
with the level-set method later in this chapter.

Let us consider two closed or open curves Γ1 and Γ2 discretized asX = {x1, x2, · · · , xn}
and Y = {y1, y2, · · · , ym} in R2. The curves evolve independently according to the
equation (23). The algorithm for merging two curves is as follows:

1. Compute the distance between X and Y and find one point from each curve
where the minimum is reached. Let us denote the distance as d, the point from
X as xmin and from Y as ymin.

2. Check if the distance d between curves is smaller than a given tolerance ε. If
not, compute new time-step and go to 1.

3. Create a new curve Z. We must take into account the type of merged curves.
Merging two closed curves will produce one closed curve. Merging one open and
one closed curve will produce one open curve and merging two open curves will
produce two open curves.

4. Copy points from X from the beginning (i.e., from x1) up to xmin to Z. Figure
9a; segment A (green).

5. Copy points from Y from ymin up to the end (i.e., up to ym) to Z. Figure 9a;
segment B (blue).

6. Copy points from Y from the beginning (i.e., from y1) up to ymin to Z. Figure
9a; segment C (brown).

7. Copy points from X from xmin up to the end (i.e., up to xn) to Z. Figure 9a;
segment D (black).

8. Delete X and Y .

9. Compute a new time-step for Z and go to 1.

Note that in case of two open curves, it is necessary to create two new curves Z1 and
Z2 and copy the points there.

We also consider that one curve can touch itself and thus split itself into 2 parts.
Let us consider a closed or open curve discretized as X = {x1, x2, · · · , xn}. The curve
evolves independently according to the equation (23). The algorithm for splitting into
two curves is as follows:
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(a) Merging of two curves.
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(b) Splitting of one curve.

Figure 9: Algorithm for topological changes.

1. Compute the distance between points in X and find two points where the min-
imum was reached. Let us denote the distance as d, and the points as xmin1

and xmin2. We do not consider several points in the neighborhood of each point
when measuring the distance to avoid finding minimal distance for two neigh-
boring points. The number has to be computed according to the value of a
given tolerance ε (see the next step). We recommend to omit all points with the
distance smaller than at least 4ε. In Figure 9b, the algorithm for the distance
computation starts several discretization points after the current point and ends
several points before the current active point.

2. Check if the distance d between points is smaller than a given tolerance ε. If
not, compute new time-step and go to 1.

3. Create two new empty curves Y and Z. If X is an open curve, Y will be open
and Z closed curve. If X is a closed curve then Y and Z will be closed curves.

4. Copy points from X from the beginning (i.e., from x1) up to xmin1 to Y . Figure
9b; segment A (green).

5. Copy points from X from xmin1 up to xmin2 to Z. Figure 9b; segment B (blue).

6. Copy points from X from xmin2 up to the end (i.e., up to xn) to Y . Figure 9b;
segment C (black).

7. Delete X.

8. Compute new time-step for Y and Z and go to 1.

The most important parameter for presented algorithm and also its biggest drawback
is the threshold parameter ε. Its correct value depends on the number of discretization
points and on the speed of curve evolution. For the algorithm to work correctly, it must
be higher than the maximal length of curve segments and also higher than distance
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between two following time levels. Too small value may cause the algorithm to miss
the touching point of the curves. Such situation may provide unexpected results, such
as crossing of the curves without merging of splitting, or topological changes in wrong
parts of the curves. On the other hand, too large value causes premature topological
change reducing accuracy of the computation. Therefore, when a higher accuracy
of merging or splitting is required, the curve must have a fine spatial discretization
(causing higher computation times) and relatively small time-step. Recommended
value of ε is about

ε ≈ 2 max
i=1,...,N

{|Xi −Xi−1|}. (24)

The algorithm works best with a uniform tangential redistribution of points since it
keeps the distance between points constant. With curvature adjusted redistribution,
the algorithm may fail when ε is too small or one has to choose sufficiently large ε
according to formula above.

3.2 Algorithm of discrete dislocation dynamics

The complete algorithm for the discrete dislocation dynamics of l dislocation curves
Xi, i = 1, . . . , l in slip primary slip planes η1, η2, and cross-slip plane η3 (Fig. 7) is
given as follows:

1. Set up all constants required for the simulation and generate initial shapes of
the dislocation curves Xi, i = 1, . . . , l. Curves cannot overlap.

2. Compute reciprocal interaction forces F ijintbetween dislocations Xi and Xj , i 6=
j, where i, j = 1, . . . , l using Devincre’s formula for polygonal dislocations.

3. Compute forces from channel walls F iwall for dislocation Xi, i = 1, . . . , l.

4. Map all dislocations Xi, i = 1, . . . , l into a working plane ω using the mapping
Φ (21).

5. Run the algorithm for topological changes for all dislocations Xi, i = 1, . . . , l in
working plane ω. Update the value of l if some dislocations merged or split.

6. Compute new time level for Xi, i = 1, . . . , l using the finite volume method with
the uniform redistribution of discretization points.

7. Map Xi, i = 1, . . . , l from working plane ω into the three dimensional space of
planes η1, η2, η3 using Φ−1 (22).

8. If the simulation time is smaller than the given maximal time tmax, go to 2, else
finish.

There are many possibilities of the algorithm optimization. Most simulations oc-
curred only in primary slip planes, thus, we can omit steps 4 and 7. The interaction
computation can be performed in every second or third time-step as explained in
the previous section. The uniform redistribution allows us to lower the number of
discretization points. We recommend to use approximately 120–150 nodes. If the dis-
locations cannot touch (i.e., lie on different slip planes), it is recommended to skip the
topological changes algorithm.
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Metal Temperature Shear mod. Channel width Friction Energy
ϑ [K] G [GPa] dc [nm] τfr [MPa] E [nJ·m−1]

copper

430 40 2140 3 1.97
295 42 1200 4 2.15
190 44 1050 5 2.16
77 45 700 7 2.21
4.2 46 450 9 2.27

nickel

750 49 6100 1 2.41
600 53 3000 2 2.61
293 63 1200 4 3.1
77 68 600 7 3.35

silver 293 26.2 1200 4 1.73

Table 1: Material constants for copper, nickel and silver at various temperatures.

4 Results

The mathematical model presented in this work allows us to simulate various phenom-
ena involving dislocation dynamics, such as single dislocation problems (dislocation
cycling, dislocation bowing from a channel wall, the dislocation glide through the PSB
channel) and multiple dislocation problems (interaction of two and more dislocations,
dislocation cross-slip, estimation of the passing stress and the interaction with rigid
obstacles). We mainly focus on the simulation of double cross-slip with annihilation
which is the most important contribution of this work to the problems of dislocation
dynamics.

Material constants used for simulations are stated in Table 1. The shear modulus
G used for copper simulations is taken from [14, 21] (the values for temperatures 4 K
and 430 K have been extrapolated). For nickel the values of G are taken from [52].
The shear modulus G for silver is determined by the anisotropic cubic elastic constants
C11 = 122 GPa, C12 = 91.5 GPa, C44 = 44.8 GPa.

GAg =

√
C44

C11 − C12

2
= 26.2 MPa.

The channel width dc is it taken from [1,13,14,28]. The value 1200 nm for the channel
width in silver was deduced from the micrograph Fig. 7d in [22]. For τfr in copper we
employed data from [13] for the temperature dependent friction stress in PSB channel
(the value at temperature 4 K is extrapolated). The values for the friction stress τfr
in nickel and silver are taken the same as in copper; for higher temperature the values
for nickel have been extrapolated. The cross-slip angle λ = 71◦ corresponds to the fcc
crystal geometry (see Section 2). The drag coefficient B = 1.0 · 10−5 Pa · s is taken the
same for copper, nickel and silver.

The edge dislocation energy E for copper, nickel, and silver is computed using

E =
1

1− ν
Gb2

2
.
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quantity copper nickel silver

Burgers vector magnitude b [nm] 0.256 0.255 0.288
Poisson’s ratio ν 0.34 0.31 0.37

Table 2: Burgers vector and Poisson’s ratio for copper, nickel, and silver.

The value of E(e) for copper at ϑ = 295 K is chosen so that the values of the line tension
T fit the experimental values T ≈ 0.3 nN for an edge dislocation and T ≈ 3.3 nN for
a screw dislocation [27]. The line tension T is computed according to

T (ζ) = E
(
1− ν cos2 ζ + 2ν cos 2ζ

)
= E

(
1− 2ν + 3ν cos2 ζ

)
.

The values for Poisson’s ratio ν and the magnitude of the Burgers vector for copper,
nickel, and silver are taken according to Table 2.

4.1 Frank-Read source

The Frank-Read source describes a way how dislocations can multiply by generating
new dislocation loops (closed curves). The mechanism is dealt in detail in [15, 16, 29].
Experiment 1 and corresponding Figure 10 shows the simulation of the Frank-Read
mechanism. The open dislocation curve is fixed at (−400, 0, 0) and (400, 0, 0) and is
forced to bow out under the applied shear stress τapp = 60 MPa. In case of low applied
stress, the dislocation would stop in a stable position, therefore, some higher value is
required. The evolution continues to evolve until the curve touches itself. The position
and location of the contact is detected by the algorithm for topological changes. The
algorithm computes the distance of the curve points each time step and when the
distance drops below the numerical parameter ε, the curve splitting is performed. In
this particular simulation ε is set to 5 nm. The algorithm splits the curve into one open
dislocation line with ends fixed at the same positions as the original line dislocation and
one dipolar loop (closed curve). The loop continues in expansion and the dislocation
line will again undergo the same process. The Frank-Read source cannot generate
unlimited number of dislocation loops because new loops interact with each other and
slow down the source. This phenomena is not covered by our model.

The tangential redistribution is very important for the simulations involving topo-
logical changes. In case of no tangential motion, the algorithm may fail since the
distance between discretization points is variable (usually accumulated in some part of
the curve). The uniform redistribution, which keeps the relative distance between dis-
cretization points constant, is the safest and usually the best choice for the algorithm.
However, in this particular case, we can choose also curvature adjusted redistribution
and obtain slightly higher precision of the splitting because the expected touching point
of the curve is in a part with high curvature. Redistribution values in this experiment
(Experiment 1) are ρ = 100 and ε = 0.1. The value of ρ is usually chosen higher for
the curvature adjusted redistribution than for the uniform redistribution in order to
achieve faster redistribution and shorter computational time.
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Figure 10: Simulation of the Frank-Read source. Experiment 1.

Experiment 1. The Frank-Read mechanism of dislocation multiplication.
Initial condition: Line, Γ0 = (−400 + 800u, 0, 0), u ∈ [0, 1].
Physical parameters: B = 10−5 Pa · s, b = 0.256 nm, ν = 0.34, G = 42.1 GPa
Numerical parameters: 300 nodes, curvature adjusted redistribution, ρ = 100, ε = 0.1.
External stress: τapp = 60 MPa.
Figure: Fig. 10.
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4.2 Dislocation-precipitate interaction

Dislocations can interact with other defects through the stress field. If the obstacle
stress field is weak, the dislocation may pass through the obstacle without spitting. In
case of the strong stress field generated by the obstacle, the dislocation movement is
blocked and the dislocation will surround the obstacle.

The experiment 2 and Figure 11 illustrate the combination of all previous phenom-
ena. There is one weak obstacle in the lower left corner, cluster of 7 strong obstacles
and one stand-alone obstacle in the top left corner. The dislocation moves under the
applied stress τapp = 40 MPa. The dislocation passes through the weak obstacle and
then surrounds the cluster of obstacles creating so called Orowan island. The stand-
alone obstacle causes one Orowan loop.

The dislocation (Orowan) loops around obstacles generate a stress field that in-
fluences other dislocations. If there is another dislocation passing in the vicinity of
surrounded obstacles, some higher applied stress would be necessary. The dislocation
motion is more difficult and material hardening occurs.

The simulation was performed with the algorithm for topological changes turned on
(fixed distance parameter ε = 3 nm) and with the uniform tangential redistribution.

Experiment 2. Evolution through a random cluster of obstacles. Obstacle in the lower left
corner is a weak precipitate.
Initial condition: Γ0 = (−600 + 1200u, 0, 0), u ∈ [0, 1].
Physical parameters: B = 10−5 Pa · s, b = 0.256 nm, ν = 0.34, G = 42.1 GPa
Numerical parameters: 300 nodes, uniform redistribution.
External stress: τapp = 40 MPa.

τ
(1)
obst = 150 MPa, ~xobst = (200, 0, 800) nm, robst = 60 nm;

τ
(2)
obst = 150 MPa, ~xobst = (−200, 0, 800) nm, robst = 60 nm;

τ
(3)
obst = 150 MPa, ~xobst = (0, 0, 800) nm, robst = 60 nm;

τ
(4)
obst = 150 MPa, ~xobst = (100, 0, 980) nm, robst = 60 nm;

τ
(5)
obst = 150 MPa, ~xobst = (−100, 0, 960) nm, robst = 60 nm;

τ
(6)
obst = 150 MPa, ~xobst = (0, 0, 1160) nm, robst = 60 nm;

τ
(7)
obst = 150 MPa, ~xobst = (−360, 0, 1340) nm, robst = 60 nm;

τ
(8)
obst = 150 MPa, ~xobst = (−100, 0, 1340) nm, robst = 60 nm;

τ
(9)
obst = 50 MPa, ~xobst = (−300, 0, 700) nm, robst = 60 nm.
Figure: Fig. 11.

19



0

500

1000

1500

2000

2500

-500 0 500

(a) t = 0.02 s

0

500

1000

1500

2000

2500

-500 0 500

(b) t = 0.10 s

0

500

1000

1500

2000

2500

-500 0 500

(c) t = 0.18 s

0

500

1000

1500

2000

2500

-500 0 500

(d) t = 0.26 s

0

500

1000

1500

2000

2500

-500 0 500

(e) t = 0.34 s

0

500

1000

1500

2000

2500

-500 0 500

(f) t = 0.372 s

Figure 11: Evolution through a random cluster of obstacles, weak obstacle and Orowan
island, τapp = 40 MPa, t ∈ (0, 0.26), curve discretized by M = 300 nodes,
dimensions in nm. Experiment 2
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4.3 Estimation of critical cross-slip parameters

The estimation of critical cross-slip parameters is the main contribution of the thesis.
The criterion discussed in Section 2.5 is based in Brown’s work [20]. Based on the
criterion we can construct the graph of function τapp(h) shown in Fig. 12 (nickel at
room temperature), which represents the condition τcs = τp. For values h and τapp
above the graph in the (h, τapp) plane, the primary slip continues. For the values below,
the cross-slip occurs.

40 50 60
h [nm]

30

40

50

60

τ a
p
p
[M

P
a
]

primary slip

cross-slip

Figure 12: Graph of the cross-slip borderline τcs(h) for Ni (room temperature).

The applied stress needed for bypassing is called the passing stress τpass. The graph
of τpass(h) can be constructed in a similar way. Let us consider the same arrangement
of two dislocations of the opposite signs in η1 and η2 planes neglecting cross-slip.
The approaching dislocations form either a dipole or bypass one another. We can
construct a borderline τpass(h) of the lowest applied stress required for the passing
of the dislocations in the parallel planes in the distance h apart as shown in Fig. 13
(nickel at room temperature).

Brown’s criterion is illustrated in Fig. 14. In the (h, τapp) plane, the graphs τapp(h)
and τpass(h) intersect each other and the plane is divided into three regions. For
values of h and τapp in the region below the graph of τapp(h) the cross-slip leads to the
annihilation of the screw segments. In the region above both graphs the dislocations
pass one another. In the region between the graphs on the right hand side from the
intersection C, the screw dipoles are formed. The minimum width of the screw dipoles
is delimited by the critical annihilation distance ys determined by the intersection C.
The point C represents the sharp cut-off in the distribution of screw dislocation dipole
widths observed by Mughrabi, Ackermann and Herz [28]. Accepting Brown’s criterion,
the stress corresponding to the intersection C may be interpreted as the saturation
stress τPSB.
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Figure 13: Graph of the passing borderline τpass(h) for Ni (room temperature).

In the formulation of the criterion, an ideal cross-slip geometry is considered, i.e.
the cross-slip plane is geometrically defined as the unique plane connecting the screw
segment parts gliding in two different primary glide planes. However, cross-slip can
occur in many parallel planes before or after this special cross-slip plane, in general.
In the cross-slip planes, the resolved shear stress reaches maximum provided the screw
parts are nearly above each other forming a dipole. The annihilation of the screw
dislocations along the parallel planes would require a double cross-slip into a common
primary plane. If this annihilation process is energetically more favorable than the
ideal cross-slip, annihilation has to be checked by a further simulation analysis of the
whole process.

The graph of cross-slip τapp(h) is determined as follows. For the fixed primary
slip planes distance h, several simulations with different values of applied stress are
performed to approximate the condition τcs = τp as close as possible. This provides
the value of τappl(h). Repeating the procedure for different h, the graph of τapp(h) is
obtained. The example is shown in Fig. 12. The graph of τpass(h) shown in Fig. 13
is constructed in a similar way. The values of the critical annihilation distance ys and
the saturation stress τPSB are determined by the intersection C of the graphs. The
results for copper and nickel cycled at different temperatures and for silver at room
temperature are listed in Table 3, Table 4 and Table 5 together with the available
experimental data from [1,13,14,22,28,52].

As some of the mentioned experimental data are scattered or estimated only, the
sensitivity of the simulation results with respect to the input parameters is discussed.
As noticed by Kwadjo and Brown in [20], the line tension is sensitive with respect to
the value of Poisson’s ratio ν. At the room temperature for copper, using ν = 0.4
(see [6]) instead of ν = 0.34 causes the change of τPSB from 29.5 MPa to 28.7 MPa.
The critical annihilation distance ys changes from 48 nm to 55 nm. For example the
change of the friction stress from 4 to 5 MPa in the case of the room temperature
copper causes the change of the predicted value of the saturation stress τPSB from
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Figure 14: Graph of values ys and τPSB for Ni at room temperature represented by
the intersection C. The solid line is the graph of the cross-slip borderline
τapp(h), the dashed line represents the passing borderline τpass(h).

29 MPa to 31 MPa and of the critical annihilation distance ys from 48 nm to 45 nm.
The change of the wall distance from 1200 nm to 1300 nm for the room temperature
copper leads to the change of τPSB from 29 MPa to 27 MPa and of ys from 48 nm to
51 nm.

The agreement between the measured an predicted values presented in Tables 3,
4 and 5 indicates that the introduced simplifications (neglecting the dislocation core
extension and the crucial role of the force balance at the screw tips reaching the cross-
slip geometry for initiation of a cross-slip annihilation) are acceptable for the modeling
at meso-scale.

The results summarized in Tables 3, 4, and 5 provide a hint for answers to the
questions that are still not resolved in material science:

• what mechanism controls the critical cross-slip annihilation distance ys;

• what mechanisms controls the saturation stress τPSB;

• whether the Brown’s criterion is a promising working hypothesis.

Brown’s criterion manifests the controlling mechanism of the initiation of cross-slip
annihilation confirmed by satisfactory agreement of the predicted values for copper,
nickel and silver crystals with the available experiments.

At the meso-scale Tables 3, 4 and 5 seem to give the answer “cautious yes” to the
question, whether the extension of the dislocation cores can be neglected and cross-
slip treated as a deterministic, mechanically activated process. The results exhibit the
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temperature G channel width τfr τexPSB yexs τePSB ys

[K] [GPa] [nm] [MPa] [MPa] [nm] [MPa] [nm]
4 46 450 9 85 - 77 23
77 45 700 7 60-57 - 51 33
190 44 1050 5 39 - 35 43
295 42 1200 4 27-30 50 29 48
430 40 2140 3 19 - 18 69

Table 3: Experimental results τexPSB, yexs [1, 13, 14, 28] and simulation results τPSB, ys

for copper.

temperature G channel width τfr τexPSB yexs τPSB ys

[K] [GPa] [nm] [MPa] [MPa] [nm] [MPa] [nm]
77 68 600 7 100 - 82 29
293 63 1200 4 50 - 41 51
600 53 3000 2 20 - 19 83
750 49 6100 1 9–14 - 12 116

Table 4: Experimental results τexPSB [52] and simulation results τPSB, ys for nickel.

systematic deviations at low temperatures; the measured values of the saturation stress
τexPSB are higher than the values τPSB predicted by the model. A possible explanation
is that the activation energy needed for constriction is small enough to be supplied
at higher temperatures but not at low temperatures. To overcome this barrier an
additional applied stress is needed at the low temperatures. Unfortunately, the role
of the stacking fault, the dislocation core extension, and its possible constriction as
coming from the atomistic simulations is not clear at present.

There is one more important question that is still pending for answer. Why the scaled
saturation stresses for copper, nickel and silver are almost the same. The answer to
this question follows from the fact that the model is based just on two ingredients
(besides the friction stress): the elastic moduli and the size of the dislocation pattern
(the PSB channel width). The reason is that the PSB channel width for copper, nickel
and silver at room temperature are roughly the same, ≈ 1.2 µm, the difference is only
in the shear modulus G and the forces are of an linear elastic nature, hence, for the
scaled saturation stresses the scaling by G gives the same value.

It is still unknown what mechanism controls the temperature dependence of the
saturation stress. The model does not suggest any controlling mechanism. It is only
demonstrated that the temperature dependence of the saturation stress and the cross-
slip annihilation distance can be evaluated from the temperature dependence of the
measured distance between the PSB wall and the temperature dependence of the elas-
tic constants. According to the model, one would have to specify the mechanisms
governing the temperature dependence of the PSB channel width.

The model raises a related question. The model proves that one of the main ingredi-
ents controlling the critical cross-slip annihilation distance ys is the characteristic size
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temperature G channel width τfr τexPSB yexs τPSB ys

[K] [GPa] [nm] [MPa] [MPa] [nm] [MPa] [nm]
293 26.2 1200 4 18 - 22 48

Table 5: Experimental results τexPSB [22] and simulation results τPSB, ys for silver.

of the underlying dislocation pattern. The distance between the PSB walls controls
the critical cross-slip annihilation distance through the dislocation curvature. This
has been concluded by Essmann and Differt [13] and Brown [5] already. On the other
hand, ys is one of the basic parameters governing dislocation patterns. The cross-slip
annihilation mechanism and the dislocation patterning are mutually related, and take
part in a complex self organization process, which remains an open problem.

Summary

The dissertation thesis dealt with the discrete dislocation dynamics and the main focus
was given to the topological changes (merging and splitting) and to the phenomenon
of cross-slip. The work suggested and provided detailed description of the physical
and mathematical model of the discrete dislocation dynamics which has been success-
fully applied to the phenomena occurring in metal crystals. The original results were
in agreement with available experimental data. If the experimental data were not
available, the model predicted their values (i.e., the critical cross-slip distance ys).

A solid fundamentals of the dislocation theory and dislocation dynamics were pre-
sented in Chapter 1 in order to give all necessary information required to understand
the presented model. The model described in the second part of Chapter 1 is based on
the work of Kratochv́ıl and Sedláček [17] and its solution on the work of Minárik [25]
and Křǐst’an [18], however, it is significantly improved. Topological changes achieved
by an algorithm specifically developed for the discrete dislocation dynamics and the
introduction of the cross-slip plane and the derivation of all active forces in the plane
belong among the main contributions to the model.

Considering all requirements we eventually chose the parametric approach which
can handle open and closed curves, is fast and accurate, and also well tested for the
application in dislocation dynamics [3, 4, 18, 19, 24–26, 31, 33–36, 41–44]. The method
was enriched by an algorithm for topological changes. The thesis paid special attention
to the redistribution algorithm developed by Ševčovič and Yazaki [48–51] which is
essential for the stability and accuracy of the numerical simulation. This aspect was
ommited in this document.

In the thesis we compared a semi-discrete and semi-implicit scheme for the method of
lines and a semi-implicit scheme for the finite volume method. Based on the EOC (esti-
mated order of convergence), computation speed, and the suitability for the tangential
redistribution we chose the finite volume method which is superior to the methods of
lines (described in Section 3). We also dealt the tangential redistribution from the
numerical point of view in detail and suggested the modification for the open curves
which was not considered in the original work of Ševčovič and Yazaki [49].
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The model was applied to several phenomena appearing in dislocation dynamics.
The simulation of the Frank-Read source and the dislocation-precipitate interaction
worked very well and provided qualitatively good results. However, this area of the
dislocation dynamics deserves more attention and is a subject of the future research.

Main attention was paid to the simulation of two dislocations gliding in a PSB
channel. The generalized model with the additional cross-slip allowed us to simulate the
complete phenomenon of double cross-slip and annihilation of two screw dislocations
by cross-slip. The estimation of the critical values for cross-slip using Brown’s criterion
is probably the biggest contribution of this work.

Let us sum up the results for the cross-slip simulation in several points.

• Cross-slip was treated as a deterministic, mechanically activated process. Based
on Brown’s criterion the proposed model predicted both the critical annihilation
distance ys and the saturation stress τPSB simultaneously and related them to
the size of the dislocation pattern.

• The proposed cross-slip mechanism is governed by the line tension, the applied
stress and the interaction force between dislocations of the opposite signs, which
approach one another. The ingredients of the model are: the magnitude of
the Burgers vector, the elastic moduli (appearing in the line tension and the
interaction force), the friction stress, and the characteristic size of the dislocation
pattern.

• The critical annihilation distance ys is determined as the distance between the
primary slip planes where the screw parts of the approaching dislocations are on
a “cross-road”. They are just on the point of the mutual annihilation exposed
to the applied stress required to separate them. Such a value of the applied
stress is interpreted as the saturation stress τPSB.

• The temperature dependence of τPSB and the corresponding critical annihilation
distances ys result from the temperature dependence of the elastic moduli and
of the characteristic size of dislocation patterns.

• As presented in Tables 3, 4 and 5, the simulation results of ys, τPSB are in good
agreement with the available experimental data for copper, nickel, and silver
single crystals.

The work touches several parts of the dislocation dynamics and provides answers,
or at least hints, to the important questions of dislocation dynamics in general and
cross-slip parameters in particular. There are, however, still many areas for the fu-
ture research. The dislocation-precipitate interaction can be significantly improved
by realistic simulation of precipitates. Dislocation loops generated by the Frank-Read
mechanism should interact with each other and it should be possible to simulate the
dislocation source for a longer time. Presented cross-slip model considers only the per-
fect cross-slip configuration (Fig. 6), however, the dislocations can switch the cross-slip
plane before or after the perfect slip plane. Then the double cross-slip is required. Sev-
eral simplifications, such as omitting the dislocation constriction, should be properly
addressed.

Main results of this work will be published in upcoming papers [37–40].
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[26] V. Minárik, J. Kratochv́ıl, K. Mikula, and M. Beneš. Numerical simulation of
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[35] P. Pauš and M. Beneš. Topological changes for parametric mean curvature flow.
In Proceedings of Algoritmy conference, Podbanské, 2009.
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[48] D. Ševčovič and S. Yazaki. On a motion of plane curves with a curvature adjusted
tangential velocity. In Proceedings of Equadiff 2007, 2007.
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• 2007 – 2008: Algorithmization, exercises. (Základy algoritmizace, cvičeńı)
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• Pauš P., Beneš M., and Kimura M., Comparison of Methods for Mean Curvature
Flow. Czech-Japanese Seminar in Applied Mathematics 2008, University of
Miyazaki, Takachiho, Miyazaki, Japan, September 1–7, 2008, poster.

• Pauš P., Numerical Simulation of Dislocation Dynamics International workshop
on fluid-structure interaction problems, Prague, Czech Republic, October 30 –
November 2, 2007 oral presentation.

• Pauš P., Numerical Simulation of Dislocation Dynamics Mini workshop on pat-
tern formation in reaction diffusion system with advection in Prague, Czech
Republic, September 11–12, 2007, oral presentation.

• Pauš P., Numerical Simulation of Dislocation Dynamics. Slovak-Austrian Math-
ematical Congress, Podbanské, Slovak Republic, September 16–21, 2007, oral
presentation.

• Pauš P., Numerical Simulation of Dislocation Dynamics. ICIAM 07, Zurich,
Switzerland, July 15–20, 2007, poster.

• Pauš P., Computer Analysis of Fractal Sets. QNA Seminar, Fukuoka, Japan,
October 31, 2006, oral presentation.

• Pauš P., Computer Analysis of Fractal Sets. Czech Japanese Seminar in Applied
Mathematics 2006, Czech Technical University in Prague, September 14–16,
2006, Prague, Czech Republic, poster.

Research Stays

• August 2008, Hiroshima University, Hiroshima, Japan. 1 week.

• March 2008, Slovak Technical University, Bratislava, Slovak Republic. 1 week.

• January 2007, Slovak Technical University, Bratislava, Slovak Republic. 1 week.

• October 2006, Kyushu University, Fukuoka, Japan. 2 weeks.

FNSPE Activities

• Promotion of the faculty (Den otevřených dveř́ı).

• The week of physics (Fyzikálńı týden).

• Faculty evaluation survey administration.
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